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SOFIC SYSTEMS 

BY 

ETHAN M. COVEN AND MICHAEL E. PAUL 

ABSTRACT 

A symbolic flow is called a sofic system if it is a homomorphic image (factor) 
of a subshift of finite type. We show that every sofic system can be realized as 
a finite-to-one factor of a subshift of finite type with the same entropy, From 
this it follows that sofic systems share many properties with subshifts of finite 
type. We concentrate especially on the properties of TPPD (transitive with 

periodic points dense) sofic systems. 

Introduction 

Sofic systems, the class of symbolic flows which are factors of subshifts of 

finite type, were introduced by Weiss in [15]. Weiss found sufficient, but not 

necessary, conditions for a sofic system to be intrinsically ergodic, i.e., to 

possess a unique entropy-maximizing measure. This paper is an outgrowth of 

the authors'  search for necessary and sufficient conditions for intrinsic 

ergodicity. 

In Section 1 we discuss some basic facts about subshifts of finite type and 

sofic systems. In Section 2 we show that every sofic system may be realized as 

a finite-to-one factor of a subshift of finite type with the same topological 

entropy. In Section 3 we show that a sofic system is transitive with periodic 

points dense (TPPD) if and only if it is intrinsically ergodic with support (IES). 

(A flow is IES if it is intrinsically ergodic and the unique entropy-maximizing 

measure is positive on non-empty, open sets.) In Section 4 we examine some 

properties of TPPD sofic systems. In Section 5 we raise the question of how to 

distinguish (dynamically as opposed to combinatorially) between subshifts of 

finite type and "str ict ly" sofic systems. 
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1. Subshifts of finite type and sofic systems 

IsraelJ. Math., 

Let  (X(m),~r) denote  the full shift  sy s t em on m symbol s ;  

X ( m ) = { 1 , 2 , . . . , m }  z 

= {x = (x~)lx~ = 1 , 2 , - . . , m  ;i = 0, --+ 1, ---2, .-.} 

and the shift  h o m e o m o r p h i s m  cr is def ined by [cr(x)]~ = x,+,. The  s y m b o l  set  

{ 1 , 2 , . . . , m }  may  be rep laced  by  any  o ther  set  of  cardinal i ty  m. 

A symbolic flow (X,o-) is a subflow of some  full shift  sys tem.  An n - b l o c k  

B = b,...b~ appears in X if B = xi...x~+,-~ for  some  x E X  and some  integer  i. 

Le t  

(X, n ) = {B I B is an n- block,  B appea r s  in X}. 

An n-block map of  (X, o-) is a map  f : ~ ( X , n ) - - ~ { l , 2 , . . . , m } =  ~ ( X ( m ) ,  I) fo r  

some  m => 1. An n - b l o c k  map  f gives rise to a map  of  ~ ( X , n  + 1) into 

~ ( X ( m  ), 2), a lso deno ted  by  f, defined by f(b,. . .b,+,)= f(b,...b~ )[(b2""b,+O. 

Similar ly,  for  each  k _-> I, f m a p s  ~ ( X , n  +k - I) into ~ ( X ( m  ),k ). .Define 

[~: X---~X(m ) by [~(x) = y where  y~ = f(x~ ...x,+, ,). Then  [~ is a h o m o m o r p h i s m  

of  (X, cr) into (X(m) ,~ r ) .  

THEOREM 1.1. ( C u r t i s - H e d l u n d - L y n d o n )  Let ~r:(X,o ' ) - - -~(Y,  cr) be a 

homomorphism of one symbolic flow to another. Then there exist integers n >= 1 

and k and an n-block map f of (X, o,) such that 7r = trk[~. 

PROOF The  p roo f  of  [10, T h e o r e m  3.4] for  X = Y = X ( m )  is valid in this 

case  as well. 

Le t  M be an m • m mat r ix  of  zeros  and ones  and let 

X ( M )  = {x ~ X ( m  )lM(x,,x,.O = 1 fo r  all i}. 

Then  X ( M )  is a c losed,  invar ian t  subse t  of  X(m ). A symbol i c  flow is cal led a 

subshift oflinite type if it is i somorph ic  to s o m e  (X(M), tr ) ,  where  of  cou r se  

X ( M )  ~ ~ .  Jus t  as X ( M )  is " d e t e r m i n e d  by its 2 -b locks" ,  (X, or) is a subshi f t  of  

finite type  if and only if X is " d e t e r m i n e d  by  its n - b l o c k s "  for  s o m e  n ___- 1 (cf. 

the original defini t ions of  Parry  [12] and B o w e n  [2]). 

T h r o u g h o u t  this pape r  we shall a s s u m e  that  M has no row or column which 

consists only o[ zeros. Then  X ( M )  ~ ~ and eve ry  M - a d m i s s i b l e  b lock  appea r s  

in X(M) .  (A b lock  B = b,...b~ is M - a d m i s s i b l e  if M(b~b2)...M(b,_~b,) = 1.) 

N o  loss of  genera l i ty  resul ts  f r o m  this a s sumpt ion .  
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We will sometimes find it useful to assume that M is in normal form (see 

Gantmacher  [8, p. 75]). By reordering the indices of M (which corresponds to 

an isomorphism of (X(M),tr) via a permutation of the symbol set) we may 

write 

, Mr  

where the diagonal blocks M,,. . . ,Mr are square and each Mk is either 

irreducible or the one-by-one zero matrix. It is easily vertified that X ( M )  ~ 0 if 

and only if at least one Mk is not the zero matrix. 

Let  Mk be indexed by h = {ik-,+ 1,-..,ik}, where io=0.  If Mk ~0 ,  we shall 

consider (X(Mk),tr) to be a subshift of finite type with symbol set h. 

A symbolic flow is called a sofic system if it is a factor  ( i .e . ,homomorphic 

image) of a subshift of finite type. This is equivalent to Weiss'  definition by 

Theorem 1.1 and [15, Theorems 2 and 31. 

THEOREM 1.2. Every sofic system (Y, tr) may be realized by a 2-block map 

o[ a subshift of finite type (X(M),  ~). 

PROOF. There  exists a subshift of finite type (X, o-) and an onto homomorph-  

ism 7r: (X, tr)---~(Y, tr). Without loss of generality, X = X ( N )  for some 0 -  1 

matrix N and 7r = g= where g is a k-block map of (X(N) ,  or) for  some k -> 2. 

Let  M be the matrix obtained by coding the ( k -  l ) -blocks of X ( N ) ;  if 

~ ( X ( N ) , k  - 1) = {B~, ...,Bin}, then M is the m • m matrix defined by M(ij) = 
1 if and only if b]~B~ = B~b~'~_, and this k-block appears in X(N) .  It is easily 

vertified that no row or column of M consists only of zeros. Let  h be the 

(k - 1)-block map of (X(N) ,  tr) defined by h (B,) = i. Then ha is an isomorphism 

of (X(N),  or) onto (X(M),  ~). Define f by f(i]) = g(b,"~B,). Then f is a 2-block 

map of (X(M),  o-), and f~[X(M)] = Y. 

2. 2-block maps of subshifts of finite type 

A partition of a 0 -  1 matrix M is an ordered collection of 0 -  1 matrices 

(M,, . - . ,  Mp) such such that M = M, + ..- + Mp. It will always be clear from the 

context  whether  Mk denotes a diagonal block in the normal form of M or a 

member of a partition of M. 

A partition of M induces a 2-block map f of (X(M),  ~r) by f(ij) = k if and 

only if Mk (i./) = 1. Conversely,  a 2-block map of (X(M),  o-) induces a partition 

of M. The correspondence between partitions and 2-block maps is one-to-one. 
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For a 2-block map f of (X(M),  tr) we denote the image set f| by X(f) .  
It follows that 

X(f )  = {x E X(p  )] Mx,...Mx, ~ 0 for all i -< j}, 

where (M,,--., M,) is the corresponding partition of M (cf. Weiss' definition of 

sofic system [15, p. 463]). By Theorem 1.2 the class of sofic systems is precisely 

the class of all (X(f), ~r) where f is a 2-block map of some (X(M),tr) .  
Let ~ ( f )  denote the matrix semigroup generated by {M~,...,M,}. The 

semigroup J / ( f )  reflects certain properties of the maps f and f~, as will be made 

explicit in Lemma 2.2 and Theorem 2.3. 

Before proceeding further, we show how our way of looking at sofic systems 

fits into Weiss' way. We assume familiarity with the notation of [15]. 

THEOREM 2.1. Let (X(f), tr)  be a sofic system. Then there exists a finite 

semigroup G such that X ( f ) =  X~. 

PROOF. Let {0,*} be the trivial Boolean algebra; i.e., * + * -- *. For W • d~ (/), 
let W* be the matrix over {0, *} obtained by replacing the non-zero entries of W 

= W~ W2 and Mi,...M,. = 0 if and only if M*,.. .M*. = by stars. Then (W, W2)* * * 

0. The semigroup ~ *(f) generated by,M*, . . - ,  M*} is finite and X(f )  -- X~'~I,. 

REMARK. If ~ ( f )  is finite, then X(f )  = X~,f,. 

LEMMA 2.2. (cf. [9,Theorems 8.14 and 8.28]) The semigroup all(f) is finite if 
and only if {cardf-~(B)]B appears in X(f)} is bounded. 

PROOF. As easy induction argument shows that if W = Mi, ... M~. E d,t (f), then 

W(ij)=card {B @f '(i,...i,)]B begins with i and ends with j}. Thus {card 

f - ' (B ) IB  appears in X(f)} = {EijW(ij)] W E d~(f)}. 

If d/(f) is finite, then this set is bounded. 

If the set is bounded, then ~ ( f )  is finite because there are only finitely many 

matrices of a given order with non-negative integer entries whose sum is less 

than a given integer. 

THEOREM 2.3. Let {card f - ' (B ) IB  appears in X(f)} be bounded. Then 

(1) h (X(M),  o-) = h (X(f),  or), where h denotes topological entropy. 

(2) f~ is uniformly finite-to-one; i.e., {card f~(Y)IY E X(f)} is bounded. 

PROOF. (1) It is well-known that for (X,~r), a symbolic flow h(X, cr)= 
lim,_~(1/n) logP(X,n) where P ( X , n ) = c a r d ~ ( X , n ) .  If B is an n-block 
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appearing in X(f), then [-~(B) is a collection of (n + 1)-blocks appearing in 

X(M).  Suppose that card [- '(B) <-_ K for all blocks B appearing in X([). Then 

h(X(M),  or) = lim l logP(X(M),  n) 
n ~  n 

1 
= !ira ~ logP(X(M) ,n  + 1) 

1 
_-< !im ~ log [K.  P(X([),  n )l 

= lim --1 log P(X(f) ,  n) 
n ~  n 

= h (X(I ) ,  or) 

<= h (X(M),  or). 

Therefore h (X(M), or) --- h(X(f), or). 

(2) If card f- '(B)<--K for all blocks B 

f~(y)  ~ K for all y E X(f) .  
appearing in X([), then card 

REMARK. We shall show later (Theorem 4.3) that if M is irreducible, then 

each of the conditions (1) and (2) implies that {card/-I(B)} is bounded. The 

reader will recognize that (2 )~  (1) is a special case of Bowen's "finite-to-one 

maps preserve entropy" theorem (see [4, Theorem 17]). We choose not to use 
this fact in order to stay within the framework of symbolic dynamics. 

THEOREM 2.4. Let (Y, tr) be a sofic system. Then there is a subshifl o[finite 
type (X(M),or) and a 2-block map f of  (X(M),or) such that Y = X( f )  and 
~t(f) is finite. 

PROOF. We may assume that Y = X ( g )  for a 2-block map of some 

(X(N), tr) .  Let(Nl,. . . ,Np) be the corresponding partition of N and form the 

semigroup ~*(g)  as in the proof of Theorem 2.1. Define matrices A~, ..., Ap 
indexed by (~t*(g)-  {0})• {1, ...,p} as follows: Ak [(R, i)(S,j)] = 1 if i = k and 

R = N ' S ,  and Ak[(R, i)(S,j)] = 0 otherwise. Then each Ak is a 0 -  1 matrix and 

so is A = A ~ + . . . +  Ap. 

The matrix A may contain a row or column which consists only of zeros. If 

the ith row or ith column of A consists only of zeros, form a new matrix by 

deleting both the ith row and the ith column of A. Repeated application of this 
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procedure will produce a matrix M with no row or column consisting only of 

zeros such that, with an appropriate indexing set for M,X(M)  = X(A) .  If the 

same rows and columns that were removed from A to form M are removed 

from each Ak, then we obtain 0 - 1  matrices M~,.. . ,Mp such that M = 

M1 + ' "  + Mp. It is clear that if f is the 2-block map of (X(M), tr) corresponding 

to (M, , . . . ,  Mp) then Y = X~) .  

The matrices A,, . . . ,Ap have the property that their column sums are all 

either 0 or 1. Therefore M~,..., Mp have the same property. Since this property 

is closed under matrix products, every matrix in d2([) also has this property. It 

follows that d/ ( f )  is finite. 

REMARK. The matrix M constructed in the proof is essentially the transpose 

of the matrix T which Weiss uses to prove that a sofic system is a factor of a 

subshift of finite type [15, Theorem 3]. 

COROLLARY 2.5. Every sofic system can be realized as a factor of a subshift 

of  finite type with the same entropy. 

COROLLARY 2.6. The entropy of a sofic system is the logarithm of an 

algebraic number. 

PROOF. It is well-known that h(X(M) , t r )=log  [3 where [3 is the largest 

eigenvalue of M. 

3. TPPD = IES for sofie systems 

A flow is called TPPD if it is transitive (i.e., contains a dense orbit) and the 

periodic points are dense. It is well-known that a subshift of finite type is TPPD 

if and only if it is isomorphic to some (X(M),  tr) where M is irreducible. 

A flow (X, T) is called intrinsically ergodic if there is a unique invariant 

(necessarily ergodic) measure /~ on X such that h~.(X, T)= h(X, T ) < ~ .  If, 

fur thermore , /z (U)  > 0 for each non-empty, open subset U of X, then (X, T) is 

called IES (intrinsically ergodic with support). From the standpoint of topologi- 

cal dynamics it is somewhat more .natural to study IES flows rather than 

intrinsically ergodic flows. This is because dynamical conclusions about an 

intrinsically ergodic flow (X, T) are essentially restricted to the IES subflow 

(X',  T) where X'  is the support of ~. Indeed, all of the examples of intrinsically 

ergodic flows given by Weiss in [14] are IES. 

THEOREM 3.1. A subshi[t of finite type (X,o') is TPPD if and only if it is 

IES. 
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PROOF. If (X,o') is TPPD, then we may assume that X = X(M) for some 

irreducible 0 -  l matrix M. Then [1, Theorem 4.1] h(X, t r )<oo and there is a 

unique entropy-maximizing measure. An examination of this measure (see [1, 

p. 13] or [7, Section 4]) shows that it is positive on open sets. 

Suppose that (X, tr) is IES. Since any invariant measure is concentrated on 

the non-wandering set and the non-wandering set is closed, (X, g)  is pointwise 

non-wandering. Without loss of generality, X = X(M) where M is in normal 

form: 

M = 

MI 0 / 

0 M~. 

the zero in the lower left occurring because (X, tr) is pointwise non-wandering. 

But {X(Mk)} is a pairwise disjoint collection of closed, invariant sets and the 

unique entropy-maximizing measure /z  is ergodic, so tz must be concentrated 

on one of the X(Mk). Since tz is positive on non-empty, open sets, there is 

exactly one non-empty X(Mk). Thus M is irreducible. Hence  (X, tr) is TPPD. 

LEMMA 3.2. Every subshift of fnite type ( X ( M ) , ~ )  contains a TPPD 

subshift of finite type (X(M') ,cr )  such that h(X(M'),cr)= h(X(M),cr). 

PROOF. Recall that h(X(M), tr) = log/3 where/3 is the largest eigenvalue of 

M. If M is in normal form, then /3 = max{/3,,.. ",/3r} where /3k is the largest 

eigenvalue of Mk. Thus h(X(M),tr) = h(X(Mk),cr) for some k and (X(Mk),o') 

is TPPD. 

THEOREM 3.3. Every sofic system (Y,o-) contains a TPPD sofic system 
(Y',cr) such that h(Y' ,~r)  = h (Y,~) .  

PROOF. Let f and M be as in Theorem 2.4 and M'  as in Lemma 3.2. Let 

f '  = f [ ~  (X(M'),2).  Then {card f ' - '(B)IB appears in X(f ')} is bounded and so 

h(Y, t r )=h(X(M), tr )=h(X(M') ,o ' )=h(X(f ' ) , t r ) .  Since any factor of a 

TPPD flow is TPPD, (X(f ' ) ,  o-) is TPPD. 

THEOREM 3.4. Every TPPD sofic system (Y,o-) is a factor of a TPPD 

subshift of finite type (X, cr) such that h(X,o') = h(Y, tT). 

PROOF. Again let f and M be as in Theorem 2.4. Let y ~ Y be a transitive 

point and let x E f~'(y). 
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Suppose y is positively transitive; we show that f~[co(x)] = Y. Let q ~ Y be 

a periodic point. There exist n , ~  such that o-~,(y)--~q. Then for any limit 

point p of (crn~(x)},p Eco(x) and f~(p)=q.  Thus the closed set f~[co(x)] 

contains a dense subset of Y, hence f~[co(x)] = Y. 

If M is in normal form, then co(x)C_X(Mk) where k is the unique integer 

satisfying min{xl}EIk. Thus f~ maps the TPPD subshift of finite type 

(X(Mk),cr) onto (Y, o'). Then h(Y,~r) <- h(X(Mk),cr) <-_ h(X(M),cr)  = h(Y,  cr) 

and so h(X(M~),cr)= h(Y,  cr). 

The proof if y is negatively transitive is analogous. 

REMARK. In Weiss' terminology, for a sofic system (X~,cr) where gG~O 

and Gg ~ 0 for all g ~ 0, we have (XG, or) is TPPD if and only if gGh ~ 0 for all 

g,h~O.  

THEOREM 3.5. A solic system (Y,~,) is TPPD if and only if it is IES. 

PROOF. If (Y, cr) is TPPD, then by Theorem 3.4, it is a factor of a TPPD 

subshift of finite type (X, o-) with the same entropy. But (X, or) is IES and any 

entropy-preserving factor of an IES flow is IES. 

Let (Y, cr) be IES. By Theorem 3.3, (Y, cr) contains a TPPD sofic system 

(Y' ,  o ~) such that h (Y',  or) = h (Y, or). But an IES symbolic flow has no proper 

subflow with the same entropy [7, Theorem 3.3]. Therefore Y ' =  Y. 

COROLLARY 3.6. Let (Y, cr)be a solic system.Thenthefollowingstatements 

are equivalent. 

(1) (Y,o-) is TPPD. 

(2) (Y, cr) is IES. 

(3) ( Y, tr ) is a factor of a TPPD subshifl of linite type with the same entropy. 

(4) (Y,o-) is a factor of a TPPD subshifl of finite type. 

4. TPPD sofic systems 

In [15, Lemma 2],Weiss shows that a symbolic flow is intrinsically ergodic if 

there is an ergodic, entropy-maximizing measure (which of course turns out to 

be unique) that satisfies a one-sided inequality for blocks. 

THEOREM 4.1. Let (Y,o') be a TPPD sofic system with unique entropy- 

maximizing measure v. Then there exist constants w, W > 0 such that for every 

n-block B appearing in Y, w/~" <- v(B)  <- W/fi r where h(Y, cr)= log/3. 

PROOF. There exist an irreducible 0 -  1 matrix M, an integer K > 0 and a 

2-151ock map f of (X(M),o-)  such that Y = X( f )  and card f-'(B)<= K for all 
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blocks B appearing in Y. If h(X(M) , t r )=log[3 ,  then by [!, p. 13] or [7, 

Theorem 5.2], if /z is the unique entropy-maximizing measure of (X(M),o-) ,  

there are constants v, V > 0  such that for every n-block B appearing in 

X ( M ) ,  vii3" <_ g ( B )  <= V/f3". Furthermore, u(E) = g [f?,'(E)] for every Borel 
set E of Y. 

Let B be an n-block appearing in Y. Then f - ' (B)  is a collection of 

(n + l)-blocks appearing in X(M) ,  1 =< card f ~(B) _<-- K and u(B) = g[f-~(B)].  

Therefore v/f3 "+' <- v(B)  <= KV/[3 "§ 

THEOREM 4.2. A sofic system ( Y, ~r ) is I E S / f  and only if there is an ergodie 
measure u on Y, constants w, W > 0  and [3 ~ 1 such that h(Y,o-) = hv(Y, tr) 

and w/f3" <= v(B)<- W/f3" for all n-blocks B appearing in Y. 

PROOF. If the conditions are satisfied, then h(Y, t r )= log /3  and by [15, 

Lemma 2] v is the unique entropy-maximizing measure of (Y, tr). Since v is 

positive on open sets, (Y, tr) is IES. 

THEOREM 4.3. Let f be a 2-block map of  (X(M) ,  cr) where M is irreducible. 

Then the following statements are equivalent. 

(1) At(f) is finite. 

(2) {card f - ' ( B ) I B  appears in X(f)} is bounded. 
(3) h(X(M) ,oQ = h(X(f) ,o-) .  

(4) f~ is finite-to-one. 

(5) f~ is uniformly finite-to-one. 

PROOF. By Lemma 2.2 and Theorem 2.3, it suffices to show (3)::>(2) and 
(4) ~ (2). 

(3) :ff (2): suppose h ( X ( M ) , t r ) =  h ( X q ) , r  log/3. Let  ~ and v be the 
unique entropy-maximizing measures of (X(M) , t r )  and (XOr),tr) with con- 

stants v and W as described in Theorems 4.1 and 4.2. Let  B be an n-block 

appearing in X(f) .  Then f-~(B) is a collection (n + l )-blocks appearing in 
X ( M )  and 

[card f '(B)]v < ~ _  
/3,+, =/x [f- ' (B)]  = v(B)<= . 

Therefore card f - ' (B)  <= W[3/v. 

(4) �9 (2): if {card f - ' ( B ) I B  appears in X(f)} is unbounded,  then there exists 

W ~ At(f) with some entry W(q)  >- 2. Hence  there are distinct blocks B and B '  

of the same length, both appearing in X ( M ) ,  such that f ( iBj  ) = f ( iB 'j ). Since M 

is irreducible, there is a block of the form jCi which appears in X ( M ) .  
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Therefore A = iBjC and A ' =  iB ' jC are distinct blocks of the same length, 

both of which appear in X ( M )  and are mapped to the same block by f. Then the 

set X = {...D_,DoD,...IDk = A or A'} is an infinite, indeed uncountable, 

subset of X ( M )  which is mapped by f~ to a single point. 

REMARK. In view of [7, Theorem 3.3] (an IES symbolic flow contains no 

proper subflow with the same entropy), Theorem 4.3 may be thought of as an 

extension of Theorems 5.6 and 5.12 of [10] which state that an endomorphism 

of (X(n),o-) is onto if and only if it is uniformly finite-to-one; see also [7, 

Theorems 5.7 and 5.8]. 

REMARk. We cannot drop irreducibility from the statement of Theorem 4.3. 

Let 

M = 

1 i 0 0 / 

1 1 0 0 

0 0 1 i 

0 0 1 I 

so that X ( M )  is two copies of the full 2-shift, and let f correspond to the 

partition ( (oo )  (0 o o o)) 
0 0 0 0 1 l 0 0 

0 0 l l 0 0 0 0 

0 0 l l , 0 0 0 0 

Fhen f= is infinite-to-one (it is the identity on one copy and maps the other copy 

~o a single point) but X ( f )  is the full 2-shift. 

COROLLARY 4.4. Let 7r: (X, tr)---~(Y,~) be a homomorphism of  u TPPD 

~ubshift of  finite type onto a sofic system. Then the following statements are 

equivalent. 
(I) rt is finite-to-one. 

(2) 7r is uniformly finite-to-one. 

(3) h ( X , o ' ) =  h (Y ,  tr). 

COROLLARY 4.5. Let 7r: (Y,o ' ) -~(Y2, t r )  be a homomorphism of  one TPPD 

sofic system onto another. Then the following statements are equivalent. 

(1) ~r is finite-to-one. 

(2) rr is uniformly finite-to-one. 

(3) h(Y~ , t r )=  h(Y2, tr). 
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PROOF. There is a uniformly finite-to-one homomorphism ~b of a TPPD 

subshift of finite type (X, o-) onto (Y,, or). Apply Corollary 4.4 to the map ~r4~. 

It is now easy to extend the results on inverses of onto endomorphisms in 

[10, sections 9-12] and [7, section 6] to finite-to-one homomorphisms between 

TPPD sofic systems. Bowen ([4] and [5, section 4]) has similar results for 

homomorphisms of subshifts of finite type to Axiom A diffeomorphisms. 

The next theorem gives a finite procedure for deciding whether the condi- 

tions of Theorem 4.3 are satisfied. It may be thought of as an extension of 

Blackwell's Theorem [9, Theorem 8.7] which states that an n-block map of the 

full 2-shift defines an onto endomorphism if card f - ' ( B )  = 2 "-~ for all blocks B 

of length less than or equal to 2"-'. 

THEOREM 4.6. Let M be an irreducible m • m matrix of  zeros and ones and 

let f be a 2-block map of  ( X ( M ) ,  o') with corresponding partition (M,, ..., M,) .  

Then the conditions of  Theorem 4.3 are satisfied if  and only if every product of  

the form M~,. . . M~k with 1 <= k <- 2 "  + 1 is a 0 - 1 matrix. 

PROOF. The proof of (4) f f  (2) of Theorem 4.3 shows that (4) implies that 

every member of ~ ( f )  is a 0 -  1 matrix. 

Suppose every k-fold product of M~s is a 0 -  1 matrix for ! _-< k _-< 2 "t2 + 1. 

Define subsets ~1, ~2 .... of ~ ( f )  by ~ .  = {W E ~ff(f) [ W = M,, �9 �9 �9 M,k for some 

k _-< n}. Then each ,~ is finite, ~ .  _C o#.+1 and if ad. = ~.+~, then ~d. = ~.+~ = 

~d.+z . . . . .  d~(f). Since there are only 2 "  matrices of order m with entries 0 

or 1, we must have ~ .  = ~.+, for some n <_-2"2+ 1. 

REMARK. The bound 2 "2 + 1 given in the theorem is extremely crude. In our 

setting, Blackwell's bound would be m. 

5. Strictly sofic systems 

A sofic system which is not a subshift of finite type is called strictly sofic. Are 

there dynamical properties which distinguish between subshifts of finite type 

and strictly sofic systems? The following remarks pertain to this problem. 

(1) The class of strictly sofic systems is not closed under uniformly finite- 

to-one symbolic homomorphisms. Let (Y,~r) be the "even"  system of Weiss 
*- -odd~  

[15]: Y = {y [y, = 0 or 1,01 .... 10 does not appear in Y}. Then Y = X ( g )  where 

M---x ( l l )  a n d g l 0  c ~ 1 7 6 1 7 6  10)00 ' (01))10 . I f M  is indexed by 0 and 1, 

then g(x~x2) = x~ + x2(mod 2). It is easy to see that (Y, tr) is TPPD and strictly 
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sofic. L e t / ' : ~ ( Y ,  3)~{0,1} be defined by / ( 0 0 1 ) = f ( l l 0 ) = l  and / ( B ) = 0  

(,,) otherwise. Then f~ is uniformly fnite-to-one and f~(Y)= X 10 " 

(2) The zeta function does not distinguish between subshifts of finite type 

and strictly sofic systems. Bowen and Lanford [6] show that the zeta function 

of (X(M),cr) is given by ~x~M~.~(z) = [det (I - zM)]-' .  With minor modifica- 

tions, the procedure used by Manning [11 ] to calculate the zeta function of an 

Axiom A diffeomorphism can be used to calculate the zeta function of 

(X(/),cr) when L is uniformly finite-to-one. 

Let 

/llO  

and let f be the 2-block map of ( X ( M ) , a )  corresponding to the partition 

1001/, 
\ 010 /  \ i 0 0 /  

The Bowen-Lanford formula and Manning's procedure can be used to show 

that 

~',x,M,.~,(z) = ~',x,1,.~,(z) = 1/(I - z - z2). 

(,,) 
It is easy to see that ( X ( M ) ,  or) is isomorphic to (X 10 ' ~) '  and in this setting 

(11) under g~, where g(x . x2xO=x ,  +x3 (mod 2). It is X ( f )  is the image of X I0 

easily checked that (X( / ) , t r ) i s  strictly sofic. 

The zeta function of a strictly sofic system, although rational, need not be the 

reciprocal of a polynomial. For example, the zeta function of the "even"  

system is (! + z)/(1 - z - z2). 

(3) A TPPD subshift of finite type with a fixed point must be (topologically) 

mixing, however, non-mixing TPRD sofic systems with fixed points are easily 

constructed. 

(4) A "spectral decomposition" theorem (cf. [13, p. 777]) holds for subshifts 

of finite type: the non-wandering set of (X(M), t r )  is a disjoint union of finitely 

many TPPD systems, namely the (X(Mk) ,  cr)'s. The corresponding result is not 

true for strictly sofic systems. Let Y = {y [y, = 0 or 1} U {y l Y, = 0 or 2}. 
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